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Direct numerical solutions of the three-dimensional time-dependent Navier-Stokes 
equations are presented for the evolution of three-dimensional finite-amplitude 
disturbances of plane Poiseuille and plane Couette flows. Spectral methods using 
Fourier series and Chebyshev polynomial series are used. It is found that plane 
Poiseuille flow can sustain neutrally stable two-dimensional finite-amplitude dis- 
turbances a t  Reynolds numbers larger than about 2800. No neutrally stable two- 
dimensional finite-amplitude disturbances of plane Couette flow were found. 

Three-dimensional disturbances are shown to have a strongly destabilizing effect. 
It is shown that finite-amplitude disturbances can drive transition to turbulence in 
both plane Poiseuille flow and plane Couette flow at Reynolds numbers of order 1000. 
Details of the resulting flow fields are presented. It is also shown that plane Poiseuille 
flow cannot sustain turbulence at Reynolds numbers below about 500. 

I. Introduction 
One of the oldest unsolved problems of fluid mechanics is the theoretical description 

of the inception and growth of instabilities in laminar shear flows that lead to trans- 
ition to turbulence. The behaviour of small-amplitude disturbances on a laminar flow 
is reasonably well understood, but understanding of the behaviour of finite-amplitude 
disturbances is in a much less satisfactory state. There is as yet no close agreement 
between theoretical and experimental studies of transition flows, 

In  the laboratory, Davies & White (1928), Kao & Park (1970), and Pate1 & Head 
(1969) have shown that plane Poiseuille flow is unstable to finite-amplitude disturb- 
ances at Reynolds numbers as low as 1000 and that initially turbulent flow remains 
turbulent at slightly lower Reynolds numbers. Here the Reynolds number is R = Uh/Y, 
where U is the maximum downstream velocity, h is the half-channel depth and v is 
the kinematic viscosity. On the other hand, Nishioka, Iida & Ichikawa (1976) per- 
formed experiments in a low-turbulence wind-tunnel in which they were able to 
maintain laminar plane Poiseuille flow at Reynolds numbers as large as 8000. In  
order to postpone transition to R = 8000, Nishioka et al. had to reduce the background 
turbulence level to  less than 0.05 yo. At larger disturbance levels, instabilities were 
obtained at lower (subcritical) Reynolds numbers. The experiments of Nishioka et al. 
were performed in a channel with aspect ratio (ratio of width to depth of channel) of 
27.4. At lower aspect ratios, the channel geometry may induce significant three- 

7 Present address: 1929 Crisanto 907, Mountain View, CA 94040. 
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dimensionality that may drive transition a t  lower R. This latter effect may influencc 
the results of Kao & Park but should not affect those of Davies & White and Pate1 & 
Head. Thus, it  appears that the transition Reynolds number observed experimentallj 
depends on both the spectrum and amplitude of the initial two- and three-dimensional 
disturbances to the flow. Typically, transition is observed a t  Reynolds numbers-of 
about 1000. 

The experimental situation with regard to plane Couette flow is far less satisfactory. 
Reichardt (1959) showed that a turbulent flow is obtained at Reynolds numbers 
(based on half-channel depth and wall velocity) as low as 750. Mollo-Christensen (private 
communication) has obtained similar results. These experimental findings may be 
subject to dispute because of end effects which, it seems, are difficult to remove. In 
summary, the only experimental evidence available to date suggests that plane 
Couette flow undergoes transition at  Reynolds numbers similar to those of plane 
Poiseuille flow. 

Some insight into the mechanism of transition in planar shear flow was given by the 
pioneering experiments of Klebanoff, Tidstrom & Sargent (1 962) who studied the 
evolution of a controlled three-dimensional disturbance in a laminar boundary layer. 
They found that production of longitudinal vorticity by the three-dimensional 
disturbance gives a secondary motion that creates local inflexional profiles; the result- 
ing highly unstable profiles lead almost instantaneously to turbulent spots. The key 
result obtained by Klebanoff et al. is that initially weak three-dimensional disturbances 
may control the nonlinear development of the flow and its transition to turbulence. In 
this paper we expand on this idea by studying whether a similar effect can control the 
transition to turbulence in plane Poiseuille and plane Couette flow. 

Let us begin by reviewing theoretical approaches to these problems. The equations 
of motion are the Navier-Stokes equations 

8v(x,t) ~ + v(x, t )  . Vv(x, t )  = - Vp(x, t )  + VV2V(X, t )  
at 

and v . v(x, t )  = 0, (1 ' 
where v(x, t )  = (u, v, w) is the velocity field at  location x = ( x ,  y, z )  and time t ,  p(x, 
is the pressure (divided by density), and v is the kinematic viscosity. To date there 
no compelling evidence that the Navier-Stokes equations are in any way inadequal 
on the space- and time-scales involved in transition and turbulence. 

The flows discussed in the present papor are confined between rigid walls at  z = k 1 

and extend to infinity in the horizontal directions x ,  y. The boundary conditions at the 
rigid walls z = & 1 are that the velocity of the fluid must equal the velocity of the wall. 
In  plane Poiseuille flow, the undisturbed fluid motion is given by 

v(x, t )  = (1  - 9,0, O ) ,  p(x, t )  = - 2vx; (1 *3) 
this flow is driven by a pressure gradient. In  plane Couette flow, the undisturbed fluid 
motion is given by 

this flow is driven by the motion of the walls at z = +. 1. For these flows the maximum 
velocity of the undisturbed flow is 1, so the Reynolds number based on half-channel 
width is 

v(x, t )  = ( Z , O ,  01, p(x, t )  = 0; (1.4) 

R =  1 /v. (1  5)  



Turbulence in plane Poiseuille and plane Couette flow 161 

The evolution of a small disturbance on a plane-parallel shear flow is governed by 
the Orr-Sommerfeld equation, which is 

with boundary conditions 

w = w ' = O  at z = + 1 .  (1.7) 

Here the unperturbed velocity is ( U ( z ) ,  0,O) and the small disturbance is assumed to 
have the form 

(1.8) 

where 01 and p are the wavenumbers in the x and y directions, respectively, and w is 
the (complex) frequency of the disturbance. If a and p are real and Im w > 0, then the 
small disturbance is linearly unstable. On the other hand if all such small disturbances 
to a plane-parallel shear flow have Im w < 0, then the shear flow is linearly stable. 

The critical Reynolds number R, is defined as the lowest value of R a t  which there 
is any solution of the Orr-Sommerfeld equation with Im w = 0. For R > R,, linearly 
unstable solutions of the Orr-Sommerfeld equation may exist. In  a unidirectional 
plane-parallel shear flow [v(x, y, z) /u(x ,  y, z )  is independent of z, y, x and w(x, y, x )  = 01, 
Squire's theorem (see Lin 1955) implies that if, at some Reynolds number R, there 
exists an unstable three-dimensional disturbance [P 9 0 in (1.8)] then there exists an 
unstable two-dimensional disturbance [/3 = 01 at a lower Reynolds number. There- 
fore, the mode that becomes unstable at R, must be a two-dimensional mode. [We 
emphasize for later reference that, a t  Reynolds numbers larger than R,, the most 
unstable solution of the Orr-Sommerfeld equation may be three-dimensional (see 
Michael 1961).] 

Asymptotic analysis of the Orr-Sommerfeld equation for plane Poiseuille flow 
using recently improved WKB techniques leads to the estimate R, w 5769.7 (Lakin, 
Ng & Reid 1978); earlier asymptotic analysis had given R, w 5360 (see Lin 1955). 
Direct numerical solution of the Orr-Sommerfeld equation gives R, w 5772.22 
(Orszag 1971 b ) .  The mode that becomes unstable at R, has wavenumbers a w 1.02055 
and /3 = 0. Thus the theory of small-amplitude disturbances suggests that plane 
Poiseuille flow is unstable only for Reynolds numbers greater than 5772, in contrast 
with the experimental observation of possible transit.ion to turbulence a t  Reynolds 
numbers as low as 1000. 

In  plane Couette flow, all numerical evidence suggests that all modes of the Orr- 
Sommerfeld equation are stable at all Reynolds numbers (Davey 1973). The absence 
of any critical Reynolds number R, for plane Couette flow is in conflict with the 
available experimental evidence that this flow undergoes transition at modest 
Reynolds numbers. 

Meksyn & Stuart (195 1)  suggested that finite-amplitude nonlinear effects may 
permit the growth of disturbances a t  subcritical Reynolds numbers. Meksyn & Stuart 
introduced the so-called mean field equations in which only the interaction of the mean 
flow with the primary disturbance wave is retained and higher harmonics are neglected. 
They found that finite-amplitude two-dimensional disturbances to plane Poiseuille 
flow are unstable at Reynolds numbers larger than about 2900 with a threshold 

w(x, t )  = Re [w(z) eiaX+4Pg--iot I, 

h I'1.M 96 
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amplitude of about 8 yo of the centre-line velocity. Numerical work by Grohne (1969) 
solving the mean field equations gave a critical Reynolds number of about 2500 (based 
on the perturbed centre-line velocity). 

Stuart (1960) and Watson (1960, 1962) extended the Meksyn-Stuart theory to 
include the second harmonic of the two-dimensional primary wave. Their results for 
plane Poiseuille flow are close to those of Meksyn & Stuart. Further work using the 
Stuart-Watson method by Reynolds & Potter (1967) has confirmed that velocity 
fluctuations of a few per cent can drive two-dimensional finite-amplitude instabilities 
at Reynolds numbers above 2900. The original Stuart-Watson method involves 
expansions in both small amplitude and small I m  ( w )  about the neutrally stable modes 
at I?,. Recently, Itoh (1977) has extended the method of Eckhaus (1965) in order to 
reformulate the theory in a manner that he claims avoids the restriction to the 
neighbourhood of R,; a critique of Itoh’s theory is given by Davey (1978). 

A slightly different approach to the two-dimensional finite-amplitude instability 
problem has been given by Pekeris & Shkoller (1967, 1969,’1971), Zahn et al. (1974) 
and Herbert (1976, 1977). In  these investigations, the two-dimensional Navier-Stokes 
equations are solved using periodic boundary conditions in x by expanding the 
solution in a highly truncated Fourier series in x. Pekeris & Shkoller (1971) found 
two-dimensional instabilities of plane Poiseuille flow a t  Reynolds numbers as low as 
1000; at R = 1000, instability is achieved with a 6 % perturbation, while at R = 3000 
instability is achieved with a 0.4 yo perturbation. Stuart (1971) faults the accuracy 
of the Pekeris & Shkoller (1967, 1969) calculations. Our numerical solutions of the 
Navier-Stokes equations reported in tj 3 give no evidence of two-dimensional finite- 
amplitude instabilities in the vicinity of those predicted by Pekeris & Shkoller (1971) 
on the basis of nonlinear stability calculations using expansions in eigenfunctions of 
the Orr-Sommerfeld equation. 

Zahn et al. solved the Navier-Stokes equations for plane Poiseuille flow by retaining 
only two Fourier modes in x and using an unequally spaced finite-difference grid in z.  
They found a minimum critical Reynolds number for two-dimensional finite-amplitude 
instability of 2707. The instability at  this Reynolds number is achieved with a value 
of a = 1.3126. 

Herbert (1976, 1977) performed a similar calculation using up to eight Fourier 
harmonics in x and 41 Chebyshev polynomials in the z direction. He found a critical 
Reynolds number of 2935 with a corresponding a = 1-3231. Herbert’s calculations are 
directly comparable to ours in that he used essentially the same numerical technique 
as we do. The principal differences are that: (i) Herbert seeks neutrally stable finite- 
amplitude two-dimensional modes by solving time-independent equations while we 
solve the time-dependent problem; and (ii) Herbert uses up to eight Fourier harmonics 
in x while we use up to 32. Our two-dimensional calculations are in good agreement 
with those of Herbert. 

In  summary, the best available evidence to date suggests that two-dimensional 
disturbances are unstable only for Reynolds numbers larger than about 2800. Our 
numerical solutions reported in 3 confirm this result. 

Direct numerical calculations of the two-dimensional Navier-Stokes equation were 
performed by George, Hellums & Martin (1974). They obtained instability only for 
Reynolds numbers larger than about 3500. Further discussion of their results is given 
in tj 3. 
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The current state of understanding of the effect of three-dimensional disturbances 
on plane Poiseuille flow is less well settled. Meksyn (1964) applied the mean field 
equations for plane Poiseuille flow and found three-dimensional finite-amplitude 
instability at R = 1260, but he also found two-dimensional instability at R = 1270. 
The inconsistency of these results with other numerical calculations of the mean field 
equations and the Stuart-Watson equations remains unexplained, but, in any case, 
they do not show a large effect of three-dimensionality. Zahn et al. (1974) examined 
some three-dimensional modes and found them to be at least as stable as the two- 
dimensional ones. Most recently, Itoh (1  978) has extended the Stuart-Watson- 
Eckhaus theory to three-dimensional disturbances for Reynolds numbers close to the 
linear stability limit of 5772. Itoh found that three-dimensional disturbances are 
strongly destabilizing, but Davey’s (1978) criticism may still apply; in any case, 
Itoh’s theory does not apply to strongly subcritical Reynolds numbers. Also, Hocking, 
Stewartson & Stuart (19.72) and Davey, Hocking & Stewartson (1974) studied the 
evolution of three-dimensional finite-amplitude disturbances to plane Poiseuille flow 
at supercritical Reynolds numbers. They found that three-dimensional effects are 
destabilizing above the linear stability limit. 

Theoretical investigations of the finite-amplitude stability of plane Couette flow 
are also incomplete at this time. Kuwabara (1967) applied the mean field equations of 
Meksyn & Stuart and found that the minimum critical Reynolds number for finite- 
amplitude instability of plane Couette flow to two-dimensional disturbances to be 
R = 45212 with the unstable mode having wave vector a = 13.565, /3 = 0. Ellingsen, 
Gjevik & Palm (1970), Davey & Nguyen (1971) and Coffee (1977) used the Stuart- 
Watson method to study two-dimensional finite-amplitude instability. They found 
instability to low-amplitude disturbances down to  Reynolds numbers of 1000 and 
below, However, the absence of neutrally-stable linear eigenmodes of plane Couette 
flow casts some doubt on the applicability of the Stuart-Watson method which 
involves an expansion about neutral stability (Rosenblat & Davis 1978). Lessen & 
Cheifetz (1  975) also studied the nonlinear evolution of two-dimensional disturbances 
of plane Couette flow. Their calculations cast doubt that any unstable two-dimensional 
disturbances exist. Herbert (1977) reports inability to find neutrally stable finite- 
amplitude solutions of plane Couette flow using highly truncated Fourier expansions 
in x. Our numerical solutions of the Navier-Stokes equations reported in 3 give no 
evidence yet of two-dimensional finite-amplitude instabilities in the neighbourhood 
of those predicted by Ellingsen et al., Davey & Nguyen, and Coffee. In  summary, 
there are some significant disagreements on the existence and strength of two- 
dimensional finite-amplitude instabilities of plane Couette flow. 

In  this paper, we solve the Navier-Stokes equations numerically to study quanti- 
tatively the instability and transition to turbulence of plane Poiseuille and plane 
Couette flows. Since the resulting turbulence is strongly three-dimensional and since 
two-dimensional nonlinear disturbances of these laminar shear flows do not seem to 
be able to explain observed experimental results, we concentrate on the study of 
possible three-dimensional mechanisms. 

Some insight is given by results for transition in boundary-layer flows where the 
experiments of Klebanoff et al. (1962) and theory of Benney and Lin (Benney & Lin 
1960; Benney 1961, 1964) suggest that the secondary motions produced by the inter- 
action of three-dimensional modes with two-dimensional modes can produce velocity 

6-2 
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profiles that are highly inflexional and unstable. Numerical calculations of the Benney 
-Lin equations by Antar & Collins (1975) have shown that this kind of theoretical 
approach is in some agreement with experiments. Direct numerical calculations of the 
three-dimensional Navier-Stokes equation for boundary-layer flow have shown 
quantitatively the strength of these three-dimensional effects in producing transition 
(Orszag 1976). On the other hand, direct numerical calculations of the two-dimensional 
Navier-Stokes equations for boundary-layer flow (Fasel 1976; Fasel, Bestek & 
Schefenacker 1977; Murdock 1977; Murdock & Taylor 1977) do not exhibit explosively 
strong physical instabilities and the small-scale excitation and apparent randomness 
characteristic of transition. 

Because of the limited spatial resolution of our calculations, we do not address in 
detail the nature of the small-scale flow structures that result from flow breakdown. 
Our goal is to explain the mechanisms by which flows that break down to turbulence 
develop. The development of very small-scale structures in these flows, as studied by 
Landahl (1972), is beyond the scope of the present work. 

In  $ 2 ,  we discuss briefly the numerical methods used in the present study. Then, 
in $3,  we present results for two-dimensional linear and nonlinear disturbances of 
plane Poiseuille and plane Couette flow. l n  $4, we present results of calculations of 
three-dimensional finite-amplitude instabilities of these flows and the resulting 
transition to turbulence. Finally, in $5 ,  we summarize our results. 

2. Numerical methods 
We solve the Navier-Stokes equations (1.1)-( 1.2) expressed in rotation form 

-- av(xy t ,  - v(x, t )  x o(x, t )  - VrI(x, t )  + VVZV(X, t ) ,  
at 

where w(x, t )  = V x v(x, t )  is the vorticity and rI(x, t )  = p(x, t )  + ilv(x, t ) I 2  is the 
pressure head. The flow is assumed to take place in the three-dimensional box 
0 6 x  < X ,  -&Y 6 y < gY,  - 1  < z  < 1. At z =  + - 1  we impose the boundarycon- 
ditions that the fluid velocity match the wall velocity. In the horizontal directions, we 
impose periodic boundary conditions so that 

v(x + mX, y + n Y ,  z ,  t )  = v(x, y, z, t )  (2.2) 

for all integers rn, n. These periodic boundary conditions are consistent with the 
Navier-Stokes equations and the laminar solutions (1.3) for Poiseuille flow and (1.4) 
for Couette flow. 

The choice of periodic boundary conditions in horizontal planes does cause some 
problem with respect to comparison with experiment since these boundary con- 
ditions are not realized in the laboratory. There are two justifications for their use: 
(a)  The instabilities of laminar flows that lead to turbulence are of small spatial 
scale so that boundary conditions should have little effect; and ( b )  the spatial growth 
of a disturbance in a laboratory co-ordinate frame appears in an advected co-ordinate 
frame as temporal growth, similar to that observed with the boundary conditions 
(2.2). Transition experiments in a flat plate boundary layer have been performed 
(Orszag 1976) with proper inflow-outflow boundary conditions applied and the results 
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are qualitatively the same as in the present work. Also, Fasel et al. (1977) have used 
inflow-outflow boundary conditions in their numerical simulations of two-dimensional 
disturbances to plane Poiseuille flow with results similar to those obtained using 
periodic boundary conditions. We offer no more excuses for the boundary conditions 
( 2 . 2 )  used here and urge further study of their effect by future investigators. 

We solve the Navier-Stokes equations in Eulerian co-ordinates using the pseudo- 
spectral method suggested by Orszag ( 1  97 1 a) .  An introduction to the theory of spectral 
methods is given in the monograph by Gottlieb & Orszag (1977). Here we summarize 
the implementation of spectral methods for the present channel flow simulations. 

The velocity field is represented using Fourier series in x and y and a Chebyshev 
polynomial series expansion in z. Thus, the velocity field is represented as 

P 

where m, n,  p are integers and T,(z) = C O S ( ~ C O S - ~ Z )  is the Chebyshev polynomial 
of degree p . 

Equations for the spectral components u(m, n , p ,  t )  are obtained using a pseudo- 
spectral method to evaluate the nonlinear terms of the Navier-Stokes equation. Thus, 
the rotation term v x win ( 2 . 1 )  is evaluated as 

where the collocation points xj, y k ,  zz are 

xj = j X / ( 2 M ) ,  yk = ( k - N )  Y / ( 2 N ) ,  zZ = C O S ~ / P .  

The values of v(xj, Y k , z l )  are obtained from (2.3) using fast Fourier transform algo- 
rithms [improved to take advantage of the reality of v and the cosine (Chebyshev) 
transform in z as described in the appendix to Orszag (1971 a) ] .  Similarly, w(xj, yk ,  zz) 
is evaluated using fast Fourier transforms applied to the curl of (2 .3);  for this purpose 
it is helpful to note that 

where is given in terms of u by the recurrence relation 

~ ~ . . ~ u ( ~ ) ( m , n , p -  l ) - u ( l ) ( m , n , p +  1 )  = 2pu(m,n,p)  ( 1  < p < P ) ;  (2.6) 

where cq = 1 if q 2 1 and co = 2,  and u(l)(m, n,  P +  1 )  = u(l)(rn, n, P )  = 0 for all m, n. 
Also, we apply a special circular truncation to the spectral representation of v x w in 
the x, y plane in order to minimize aliasing effects (Orszag 197 1 a, 5 6). 

The evaluation of v x w by this algorithm requires 9 Fourier transforms on 2MNP 
complex data points [three transforms each to get v in physical space, w in physical 
space, and v x w back in transform (Fourier-Chebyshev) space (which is the resident 
representation through most of our computer code)]. With M = N = 16 and P = 32, 
each component of the velocity field is represented by 33 792 real degrees of freedom 
(before the circular truncation in the x, y plane is applied); evaluation of v x w by the 
above pseudo-spectral algorithm requires about 2.5 s on the CDC 7600. In contrast, 
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direct evaluation of the convolution-like sums that would be obtained by formulating 
equations for au(m, n, p ,  t ) / a t  using a Galerkin approximation procedure would require 
about 1000 times more computer time. It is noteworthy that of this speed-up by a 
factor 1000, the fast  Fourier transform contributes only roughly a factor 2; most 
of the speed-up is due to the reorganization of the calculation in terms of transforms 
(which factor into a sequence of one-dimensional transforms), be they fast or not. 
This latter result and the result noted by Gottlieb & Orszag (1977)  that Legendre 
polynomial expansions are especially accurate may suggest that Legendre polynomials 
be used in place of Chebyshev polynomials in future studies. We also note that 
one of us (S.A.O.) has recently developed a ‘fast’ Legendre transform that requires 
O(N(log, N)2/log2 log, N )  operations to transform an N term Legendre polynomial 
or surface harmonic series to or from physical space. 

Four additional features of our numerical methods deserve comment: time stepping, 
determination of the pressure, viscous dissipation, and initial conditions. A fractional 
step method is used in time so that we shall first discuss a time step of the inviscid 
equation, then the imposition of the incompressibility constraint, then viscous effects, 
and finally initial conditions. 

In order that time steps be not unduly restricted by convective stability conditions 
due to the relatively large unperturbed (laminar) flow, we use a semi-implicit scheme 
in which the largest effects of this parallel flow are handled implicitly. If the (X com- 
ponent of the) unperturbed parallel flow is denoted by U ( z ) ,  then the terms in (1.1) 
responsible for convective stability restrictions that trace to U ( z )  are just U ( z )  &/ax. 
This term is best evaluated in the mixed spectral-physical space representation in 
which x and y are represented as Fourier modes while x is kept in physical space; 
in this representation U ( z )  av/ax-+ i(27rmlX) U ( z )  u(m, n, z ) ,  which is diagonalized. 

With the semi-implicit treatment of U ( z ) ,  it  is a little tricky to obtain an efficient 
time-stepping procedure for ( 2 . 1 )  and (1.2) that is high-order accurate in time.t We 
use an Adams-Bashforth-Crank-Nicholson (ABCN) method with global error of order 
O(At2) + O(uAt), where we tolerate first-order accuracy on the viscous terms because 
our calculations are done with very small values of u. If v is large, the semi-implicit 
treatment of U ( z )  should be sacrificed for better accuracy in time. The ABCN scheme 
for the nonlinear terms in (2.1) is derived by writing &/at + Uav/ax = v x o + Uav/ax 
and applying the Crank-Nicolson scheme on the left-hand side and the second-order 
Adams-Bashforth scheme on the right; the result is 

in the mixed spectral-physical space representation. Here F = v x o + f in the mixed 
representation where we have generalized the problem slightly by introducing an 
external force (mean pressure gradient) denoted by f ;  the superscripts label the time 
step and no boundary conditions (except periodicity) are applied yet. Equation (2.7) 
is formulated for constant time steps At; for non-constant time steps [as for the first 
Sew time steps (we use a slow start to minimize initial truncation errors)], the coefficients 

t Orszag & Deville (to be published) have recently shown how to obtain unconditionally 
stable, easily implementable schemes of arbitrary-order accuracy in time for the Navier-Stokes 
equations. Comparisons with the results reported in the present paper show no appreciable errors 
due to the lower-order scheme used licrc. 
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in (2.7) are different. It is important to emphasize that the terms multiplying C ( z )  on 
the right-hand side of (2.7) are all intermediate results at time steps n -  1, n, and 
n + 1 ; if Qn-' and Qn are replaced by u n  and un or gun + tiin (as would be the case if 
naive application of the Adams- Bashforth method were made) then the scheme (2.7) 
would lead to errors of order O(At)  after application of the pressure terms in (2.1). 

Once the fractional step (2.7) is made, it is necessary to include the effect of pressure. 
This is done by the fractional step 

A 

(2.8) 

(2.9) 

+ + I -  $n+l = - VIJnfl,  
1 v . $n+1 = 0, 

where &+I has global error of order O(At2) despite the fact that Atfin+l has global 
error O(At) relative to the pressure head n. Equations (2.8)-(2.9) are solved with the 
boundary conditions 

A 

an.1 = 0, z = f 1, (2.10) 

assuming no normal wall motion. 
Equations (2.8)-(2.10) are best solved in the full spectra1 representation using a 

spectral-tau method in z (Gottlieb & Orszag 1977, $9  10, 13). The resulting equations 
for fi (dropping the time-step label) are, in the full spectral representation, given by 

h 

&m,n,p) =Q(m,n,p) - iamn(m.n,p)  o < p  Q P, (2.11) 

&m,n,p)=6(m,n,p)-iFnn(m,n,p) o < P , < P ,  (2.12) 
A 

A 

&(m, n ,p )  = d(m,n ,p )  - n(l)(m,n,p) o Q p < P -  2, (2.13) 

(2.14) 

t; &m, n,p )  = z ( - l)"&ml n, PI = 0 (2.15) 

for all retained m, n (lml < M ,  In1 < N ) ,  wheret a = 2n/X, /? = 2n/Y and f i ( l )  and 
&(I) are related to fi and & as in (2.6). 

Ifm2+ne =!= 0, anefficient procedure tosohe (2.11)-(2.15) is torewrite (2.11)--(2.15) 
as the nearly tridiagonal system (see $ 1 0  of Gottlieb & Orszag 1977) 

iam&m, n ,p )  + ipn&m, n ,p )  + &"m, n ,p )  = o o Q p < P, 
P P 

p = o  p = o  

= P(m,n,p)  2 Q p Q P ,  (2.16) 

where c,, = 2, cp = 1 ( p  2 l), ep = l ( p  < P ) ,  ep = 0 (p > P ) ,  y = a2m2+/?Zn2, and 

2 Q P Q P  CP-ZfP-2 - e P + 2 f P  + e,+,fp+2 
*(% 

= 4p(p - 1) 2(p2 - 1 )  4p(p + 1) 
(2.17) 

with 
f p  = - iamW(m,n,p)  - ipnW(m,n,p)-  y@(m,n,p) ,  (2.18) 

and and W )  related to Q and 6 by (2.6). The system (2.15)-(2.16) is solved for & 
by standard techniques in roughly the same number of operations required to solve 

Note that these definitions of a, /3 are consistent with a, /3 used in (1.8) and (2.23)-(2.27) 
below if the linear mode in (1.8) is the fundamental mode in the box 0 < x < X ,  - +Y < y < +Y.  
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pentadiagonal systems. The equations for 8 in this form are essentially diagonally 
dominant so no appreciable accumulation of round-off errors occurs. 

Once 6 is found then fi is found from 
h 

y n ( m , n , p )  = - i .~(m,n,p)- ipnB(m,n,~)-$( l ) ( rn,n,p)  0 < p < P, (2.19) 

where a, p, y are given as before in terms of m, n. Then 6 and 6 are found directly from 
(2.11)-(2.12), completing the solution for 6. 

If m = n = 0, then (2.11)-(2.15) are easily solved by appropriate applications of 
recurrences like (2.6). 

Finally, we use a full implicit fractional step to impose the viscous terms and the 
~ 

boundary conditions: 

where V, is the wall velocity 

(2.20) 

vn+1 = v, (2 = rf: l) ,  (2.21) 

at  z = rf: 1, respectively. The full implicit scheme (2.20)- 
(2.21) is unconditionally stable but i t  does induce global errors of order O(vAt) .  
Equations (2.20)-(2.21) are solved efficiently in a full spectral representation using a 
spectral-tau method; the resulting equations are essent,ially tridiagonal in the Cheby- 
shev index and diagonal in the Fourier indices (see 9 10 of Gottlieb & Orszag 1977). 
This completes the description of the main part of our computer code. 

Initial conditions for the runs reported in $ 5  3-4 usually consist of the unperturbed 
flow (1.3) or (1.4) on which we superpose finite-amplitude combinations of two- and 
three-dimensional eigenmodes of the Orr-Sommerfeld equation (1.6)-( 1.8). The Orr- 
Sommerfefd equation is solved by expanding wfz) in the Chebyshev series (Orszag 
1971 b )  

P 

(2.22) 

constructing equations for the expansion coefficients up by matrix methods (Metcalfe 
1974), finding the eigenvalue by either a global eigenvalue routine based on a matrix 
QR eigenvalue analysis or a local eigenvalue routine based on an inverse iteration- 
Rayleigh quotient method, and finally obtaining the eigenfunction by an inverse 
iteration method. The accuracy of our eigenvalues and eigenfunctions is better than 
1 part in lo6. 

Once the complex z velocity w(z)  of an eigenmode of the Orr-Sommerfeld equation 
is obtained, the x and y velocity components, u ( z )  and v ( z ) ,  respectively, are obtained 
as follows. The z component of the perturbed vorticity, given by 

with 
~ ( z )  exp [iax + ipy - iot] 

r ( z )  = ipU(2) - iav(z), 

satisfies the linear inhomogeneous equation 

- -a2 -p2)q ( z )  = i R [ ( a U ( z ) - o ) ~ ( z ) + i / 3 U ’ ( z ) w ( z ) ] ,  

(2.23) 

(2.24) 

V (  k 1 )  = 0, (2.25) 
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where R = l / v .  Using the incompressibility condition (1.2), it follows that 

(a2 +p2)  u(z )  = - i@y(z) + iaw’(z), 

(a2 +p2) v(z) = i a y ( z )  + iaw’(z). 

(2.26) 

(2.27) 

For two-dimensional disturbances, p = 0 and y(z) z w(z) = 0. 
In concluding this section we summarize some features of our computer code. 

Fourier series representations are used in x and y and Chebyshev series representations 
are used in z. Pseudo-spectral methods are applied to the nonlinear terms while tau 
methods are applied to  the pressure and viscous terms. The resulting scheme is infinite- 
order accurate in space, has no phase errors in x and y, can resolve boundary layers 
of thickness O ( l / P z )  in z [the collocation points z1 and in (2.4) are located a 
distance n2/2P2 from the walls at z = & 11 and accurately imposes the boundary 
conditions at the rigid walls and the incompresibility condition throughout the layer 
(see Gottlieb & Orszag 1977 for discussion of these features). A fractional time-step 
method is used with global error of order O(At2 + vAt); time steps are formally restricted 
only by convective stability restrictions due to the perturbed velocity [although in 
practice we do not take time steps more than about three times larger than the 
convective stability limit due to C ( z ) ] .  

A run using 32 x 32 x 33 modes ( M  = N = 16, P = 32) to represent each component 
of velocity requires about 6 s (2.5 s for evaluation of v x o) on the CDC 7600 computer 
per time step, including input-output overhead. The computer time is nearly pro- 
portional to M N P .  A typical run involves about 1000 time steps. Some runs to validate 
our code are reported in 3 3. We note here that it is our (unpleasant) experience that 
typical transition calculations require about 10 times as many time steps as typical 
turbulence decay calculations (see Orszag & Patterson 1972). The reason seems to be 
the need to maintain accurate phase relations over many linear oscillation times in 
transition calculations whereas turbulent flows are nearly critically damped and evolve 
quite rapidly in interesting ways. We also note that less than 15 h of CDC 7600 time 
was spent on the present series of computations (including a large number of runs not 
reported here). On the newly introduced CRAY-1 computer the same series of runs 
requires less than 1.4 h, showing the great strides that can now be made on significant 
fluid dynamics problems with modest computer resources. 

3. Two-dimensional finiteamplitude disturbances 
In  this section, we present results obtained using the computer code described in 

5 2 for the evolution of small- and finite-amplitude two-dimensional disturbances of 
plane Poiseuille and plane Couette flow. The first series of runs were made primarily 
to verify the accuracy of our computer program in comparison with known results. 
Two types of tests have been made: comparison of the evolution of small-amplitude 
disturbances with their predicted behaviour according to the Orr-Sommerfeld equa- 
tion; and comparison of some special finite-amplitude two-dimensional solutions with 
the numerical results of George, Hellums & Martin (1974). 

In  table 1, we present results of small-amplitude tests of the computer code. The 
values of o are obtained by Chebyshev-spectral solution of the Orr-Sommerfeld 
equation and represent the least stable eigenmode of the flow for the given a and @. 
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Reynolds number R 
x wavenumber a 
y wavenumber /3 
Re w 

Im w 
Initial amplitude 

Spatial resolution 

Time step At 
Final time T 
Computed amplitude 
decay 0 < t < T 

Predicted amplitude 
decay exp [(Im w )  TI 

Computed phase 
change (radians) 
0 < t < T  

change - (Re o) T 

(x velocity) 

(2M) x ( P +  1) 

Predicted phase 

Plane Poiseuille flow - 
TWO- Three- 

dimensional dimensional 
disturbance disturbance 

1500 1550 
1 1 
0 1 
0.3262988 0.4012928 

- 0.0282057 - 0.0282305 
2.198 x 4.964 x 

Plane Couette flow - 
Two- Three- 

dimensional dimensional 
disturbance disturbance 

5000 5000 
0.5 0.5 
0 0.5 
0.3511072 0.3517084 

-0.0413797 -0.0418436 
1.209 x 6.338 x 10-4 

8 x 3 3  

0.1 
10 
0.7535 19 

0-75423 I 

- 3.35644 

- 3.26299 

8 x 3 3  8 x 65 

0.1 0- 1 
10 6 
0.756756 0.78 1904 

0,754044 0.780143 

- 4.00617 - 2.10548 

- 4.01293 - 2.10664 

8 x 65 

0.1 
6 
0.778925 

0.177975 

- 2.10545 

- 2.1 1025 

TABLE 1. Behaviour of small-amplitude disturbances computed numerically 
compared with behaviour predicted by Orr-Sommerfeld equation. 

The predicted amplitude change in the time interval 0 < t < T is exp[(Imw)T], 
while the predicted phase change in the same time interval is (in radians) - (Re w )  T. 
It seems that most of the small error between the predicted and computed amplitude 
and phase changes of both the two- and three-dimensional modes of plane Poiseuille 
flow and plane Couette flow is due to time-differencing error. Similar tests of the 
computer code on small-amplitude disturbances have been made for Reynolds numbers 
up to 50000 with similarly good results. , 

Our next verification run used a large two-dimensional disturbance studied 
previously by George et al. (1974). They solved the two-dimensional Navier-Stokes 
equations by expanding the velocity field into a Fourier series in x and applying 
finite-difference methods in 2. George et at. did not use initial conditions corresponding 
to eigenmodes of the Orr-Sommerfeld equation, but rather chose the initial velocity 
field to be that generated by the stream function 

coshaz cosaz 
cosha cosa 

+(x, z )  = k (- - -) cos ax. 

Here a w 2.365 in order to satisfy the boundary conditions, and we integrated the 
neutrally stable case found by George et al. in which R = 4000, a = 1.05, k = 0.0599. 
The initial maximum amplitude of the perturbation of x velocity is 0.1465. Using 8 
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Run number 1 2 3 4 5 6 

Undisturbed flow t--- 
Reynolds number R 2500 
x wavenumber 1.3231 

Re w 0.4480553 
Im w - 0.0192961 

a( = 2 n / X )  

Initial amplitude 0.179 

Spatial resolution 32 x 33 

Time step At 0.05 
Final time T 150 
Growth or decay? Decay 

(x velocity) 

(2M) x ( P +  1) 

Plane Poiseuille----------, Plane Couette 
2935 2935 2935 3500 5000 
1.3231 1.3231 1.3231 1 2 

~-0.435282- 0.2848826 1.6314426 
+-0*0181933----t -0.0072171 -0.1093940 

0.182 0.108 0.072 0.217 0.184 

32x33  8 x 3 3  8 x 3 3  16x33 8 x 3 3  

0.05 0.1 0-1 0.1 0.1 
150 100 100 100 150 
Weak Neutral Decay Decay Decay 
growth 

TABLE 2. Finite-amplitude two-dimensional disturbance 
characteristics of runs discussed in 8 3. 

Fourier modes in x and 33 Chebyshev polynomials in z,  the results of our computer 
code agreed well through late times with those of George et al. It seems that the reason 
that George et al. were unable to achieve two-dimensional instability at Reynolds 
numbers as low as thosepredicted by the Stuart-Watson technique is due to two causes: 
(a) the initial condition (3.1) is not a pure mode of the Orr-Sommerfeld equation; 
(b)  more importantly, the choice a = 1.05, while close to the most unstable a for small- 
amplitude disturbances, is far from the most unstable a for finite-amplitude 
disturbances (see below). 

Some characteristics of the two-dimensional finite-amplitude runs discussed below 
are given in table 2. Additional details are given by Kells (1978). The results of 
Herbert (1976) suggest that the critical Reynolds number for finite-amplitude two- 
dimensional instability of plane Poiseuille flow is roughly 2935 with the unstable mode 
having a wavenumber a = 1.3231. Runs 2--4 present results of our numerical simula- 
tions of such a flow. 

In figure 1 we plot the profile of the x velocity component of the two-dimensional 
primary disturbance mode [which depends on x like exp(iaz)] imposed a t  t = 0 in 
run 2. The initial disturbance imposed in runs 3 and 4 has the same shape but is reduced 
in amplitude. In  figure 2 we plot the time evolution in run 2 of the maximum amplitude 
A of the x velocity of the primary wave and its harmonic [that depending on x like 
exp (2 iax)I .  After an initial transient period the primary wave settles down into a 
period of slow growth, suggesting that the initial finite-amplitude disturbance does 
not die out as t -+ 00. However, despite the growth of the finite-amplitude disturbance, 
there is no sign of ‘turbulence’ in the sense that the flow remains ordered and well 
behaved. In  figure 3, we plot the profile of the primary wave after evolution to t = 120 
in run 2; in this figure, the x-velocity component u ( z )  is plotted as a function of .z a t  a 
point x at which its phase relative to the initial perturbation is 0. Comparison of figures 
1 and 3 shows that nonlinear effects tend to move the maximum perturbation velocity 
away from the walls at z = _+ 1. In  figure 4, we plot the unperturbed velocity profile 
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- 0.2 L 

FIGURE 1. A plot of the profile u ( z )  of the x velocity of the two-dimensional initial disturbance 
used in run 2. This disturbance is chosen as the least stable eigenmode of the Orr-Sommerfeld 
equation for plane Poiseuille flow with R = 2935 and a = 1.3231. The phase of the initial per- 
turbation is chosen so that the maximum velocity perturbation occurs initially at z = 0, where 
this plot is made. The initial disturbances used in runs 3 and 4 are proportional to  that imposed 
in run 2. 

1 

FIUURE 2.  A plot of the time evolution of the maximum amplitude in z of the x velocity com- 
ponent of the two-dimensional primary disturbance [that depending on 2 like exp (iaz)] and its 
harmonic [depending on z like exp ( 2 i ~ x ) ]  for run 2. A t  lats times the primary disturbance is 
undergoing slow growth. 
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1 
1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 I I I  

1 
2 

i 

- 
0.2 c 

FIGURE 3. A plot of the z profile of the x velocity component 
of the primary disturbance in run 2 at t = 120. 

1 - 9  and the mean velocity profile obtained from run 2 at t = 120. In  figure 5, we plot 
the curvature of the unperturbed flow and the mean flow a t  t = 120. Observe that, 
although the mean flow is changed only slightly in evolution from t = 0 to t = 120, 
there are large changes in the curvature in the wall regions. 

Run 2 has 32 Fourier modes in x and 33 Chebyshev modes in z.  Its numerical accuracy 
was tested by making other runs with different values of M and P. A run with 16 
Fourier modes in x and 33 polynomials in z gave nearly identical results, while a run 
with 8 Fourier modes indicated faster instability. Increasing the number of Chebyshev 
polynomials in z to 65 gave negligible change. In  run 2, higher harmonics have very 
small amplitudes; the harmonic exp (3im) has maximum amplitude 0.01 in z at t = 120 
while the harmonic exp (7im) has amplitude 0.001. 

The results of runs 3 and 4 indicate the effect of changing the initial amplitude of 
the finite-amplitude disturbance. In  run 3 a nearly stationary disturbance is achieved 
in evolution to  t = 100 (see figure 10). On the other hand, run 4 shows that there is a 
critical amplitude of about 10 oh below which finite-amplitude disturbances decay at  
R = 2935. In  figure 6, we plot the maximum amplitude of the z velocity of the primary 
disturbance and its harmonic as a function of time in run 4. After an initial transient 
period, both the primary and its harmonic settle down to a state of steady decay. 

In  figure 7 we plot the primary wave and harmonic wave amplitude versw time for 
run 1 at R = 2500. The results that the disturbance decays as t increases for an initial 
disturbance which is designed to be close to the most unstable finite-amplitude 
disturbance at this Reynolds number suggests that all two-dimensional disturbances 
decay at R = 2500. We conclude that the threshold for neutral stability is near 
R = 2800, in rough agreement with previous theoretical results. 

Run 5 shows that decreasing a to a = 1 gives stable finite-amplitude results even 
a t  R = 3500. This result explains why George et al. (1974) were unable to find two- 
dimensional instabilities at Reynolds numbers below 3500. George et al. used a 



174 8. A .  Orszag and L. C. Kells 

1 0.5 0.5 1 

FIGURE 4. A plot of the mean velocity i i ( z )  in run 2 a t  t = 120. For comparison, the undisturbed 
plane Poiseuille flow profile 1 - za is also plotted. 

E 
15.01 

- I  - 0.5 0 0.05 1 
Z 

FIGURE 5. A plot of the curvature -G"(z) of the mean velocity profile in run 2 a t  t = 120. For 
comparison, the curvature 2 of the parabolic profile 1 - za is also plotted. 

disturbance wavenumber a = 1.05 which is close to the value of a that gives the linearly 
least stable mode of plane Poiseuille flow a t  R = 3500 among all real a, but a = 1.05 
is far from those modes that give unstable finite-amplitude disturbances. While the 
amplitudes of the harmonics of the primary wave disturbances in runs 2 and 3 are 
quite small, nonlinear effects do cause considerable distortion of the primary wave 
itself (see figures 1 and 3), giving a large effect onthe least stable a. 

In  summary, while there are finite-amplitude two-dimensional instabilities of plane 
Poiseuille flow at subcritical Reynolds numbers, there are apparently no explosive 
instabilities that can generate small-scale random flow structures when only two- 
dimensional interactions are allowed. 

Run 6 illustrates the effect of finite-amplitude two-dimensional disturbances on 
plane Couette flow. In  figure 8 we plot the profile of the x velocity component of the 
initial disturbance in run 6. This initial disturbance is constructed from a sohtion of 
the Orr-Sommerfeld equation as follows. For the given a = 2, p = 0, and R = 5000, 
the least stable eigenmode a ( z )  of plane Couette flow is asymmetric about z = 0. It 
is easy to verify from the Orr-Sommerfeld equation (1.6) that if a(z )  corresponds to  the 
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176 

0.072 

A 

0.036 

1 

FIGURE 6. A plot of the maximum amplitude A of the primary 
disturbance and its harmonic for run 4. See figure 2. 

1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~  1 1 1 1  
75 150 
r 

FIGURE 7. A plot of the maximum amplitude A of the primary disturbance and its harmonic for 
run 1 at R = 2600. The initial disturbance is chosen to be the lea& stable eigenmode of the Orr- 
Sommerfeld equation with R = 2500, a = 1.3231. See figure 2. 

0 

wave vector-frequency a, 8, w ,  then a*( - z )  is the eigenfunction associated with a, 8, 
-Re ( w )  + i Im (0). Note that the phase velocity of this complex-conjugate reflected 
mode is the negative of the phase velocity of the original mode. The initial conditions 
for run 6 are chosen to be the (symmetrized) conditions in which the x velocity is given 
by 

u(x ,  z, 0 )  = 4 RR[B(z )  +a*( - z ) ]  ei=. (3.2) 



176 S .  A .  Orsmg and L. C. Kells 

0.2 F 

- 0.2 E 
FIGURE 8. A plot of the z profile of the cc velocity component of the two-dimensional primary 
disturbance u ( z )  for the plane Couette flow run 6 a t  R = 5000, a = 2. The initial conditions BPB 

chosen aa the symmetrized combination (3.2) of the least stable eigenmode of the Om-Sommerfeid 
equation and its complex-con jugate reflected eigenmode. 

A 

0.1 

0 

t 

FIGURE 9. A plot of the maximum amplitude A 2)s. t of the x velocity of the primary disturbwoe 
and its harmonic for the two-dimensional plane Couette flow run 6 a t  R = 5000. 

In  figure 9 we plot the time evolution of the maximum amplitude of the pr imq 
disturbance and its harmonic as functions of time for run 6. The decay is quite 
rapid, in contrast with the predictions of Ellingsen et al. (1970) and Coffee (1977) 
whose theoretical calculations seem to predict that run 6 should lead to a finite- 
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amplitude stationary disturbance. Other runs for plane Couette flow give no indication 
as yet of any region of two-dimensional instability [although our computer code is not 
capable of resolving the case suggested by Kuwabara (1967)l. It is not likely that our 
decay results for plane Couette flow are due to the low 8 x 33 resolution used in run 6. 
The 33 Chebyshev polynomials used in z are more than adequate to resolve the 
verticaI structure. The 8 Fourier modes used in x also seem to be adequate; a t  t = 90, 
the primary wave has maximum amplitude 0.0053, its harmonic has maximum ampli- 
tude 0.00034, while its second harmonic has amplitude 0.000060. In  any case, our 
experience with increasing the x resolution is that higher resolution gives more stable 

results than low resolution (see 9 4). 
The high frequency oscillation exhibited by the primary wave in figure 9 is due to the 

fact that the maximum amplitude of u(x) appears alternately near z = 1 ; this effect 
is a consequence of the symmetrized mode (3 .2 )  in which the two components have 
equal and opposite phase velocity. Unsymmetrized initial conditions do not lead to 
these rapid oscillations (see figure 37). 

Our results suggest a serious discrepancy between the Stuart-Watson-Eckhaus 
theory predictions of two-dimensional finite-amplitude instability of plane Couette 
flow and direct numerical calculations that indicate decay. One possible explanation 
is that we have not sought solutions with large enough a. According to Davey & 
Nguyen (1971), the finite-amplitude disturbances requiring the least energy to excite 
have a x 0.13Rt or a z 9 for R = 5000. However, the energy required to excite a 
finite-amplitude mode at this large Reynolds number is a fairly flat function of a and 
our inability to find instability with a = 2 is, in our view, a serious criticism of the 
theory. We are now studying solutions with larger a using a higher-resolution computer 
code in order to resolve the discrepancy between nonlinear stability theory and 
numerical experiments. However, the main point of the present paper is the strength 
of three-dimensional effects; the possibility that two-dimensional interactions may be 
slightly stronger for much larger a than considered here is, we believe, a secondary 
issue. 

In  summary, our direct calculations of the Navier-Stokes equations are in reason- 
ably good agreement with nonlinear stability theory calculations of plane Poiseuille 
flow. While no transition to turbulence is either observed or predicted owing to two- 
dimensional disturbances, there are finite-amplitude motions that do not decay for 
Reynolds numbers larger than about 2800. Serious discrepancies do now exist between 
nonlinear stability theory and direct calculations of two-dimensional finite-amplitude 
effects in plane Couette flow. 

4. Three-dimensional finite-amplitude disturbances 
In  this section, we present results obtained using the computer code described in 

f 2 for the evolution of finite-amplitude three-dimensional disturbances of plane 
Poiseuille and plane Couette flow. Some characteristics of the runs discussed in this 
section are given in table 3 for the plane Poiseuille runs and in table 4 for the plane 
Couette flow runs. 

Run 3 A  is identical to run 3 discussed in $ 3  except for one interesting three- 
dimensional feature. The two-dimensional run 3 was made with the three-dimensional 
computer code using 8 x 4 ~  33 resolution and setting all flow components to be 
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Run number 
Reynolds number R 
Spatial resolution 
2 M  
2N 
P +  1 

Two-dimensional disturbance 
x wavenumber a( = 2n/X)  
Re o 
Im w 
Initial x velocity amplitude 

Three-dimensional disturbance 
x wavenumber a 
y wavenumber p( = 2n/ Y )  
Re o 
Im w 
Initial x velocity amplitude 

17 18 
1250 1250 

16 8 
16 8 
33 33 

1 1 
t- 0.632- - - 0-109&-+ 
0.10 0.10 

1 1 
1 1 
t 0*638o----t 

0.06 0.06 
t - 0.1 140- 

19 20 
1000 1000 

16 8 
16 8 
33 33 

1 1 
t 0.6053- 
+-0*1192- 
0.09 0.09 

1 1 
1 1 
t 0.6118- 

0.05 0.05 
t-0*1241- -+ 

TABLE 4. Finite-amplitude three-dimensional disturbance characteristics 
of plane Couette flow runs discussed in § 4. 

independent of y at t = 0. Since we did not reset the flow to be independent of y st 
later times, round-off error induced a small (order 10-14) three-dimensionality on the 
flow. This three-dimensional component was rapidly filtered into an unstable three- 
dimensional mode that grew rapidly on the finite-amplitude two-dimensional back- 
ground. A plot of the maximum amplitude of the primary two-dimensional disturbance, 
its two-dimensional harmonic, and the fundamental oblique wave (with wavenumbers 
a = 1.3231, B = 1) is given in figure 10. Note that the amplitude of the oblique com- 
ponent is multiplied by los. The results of run 3A show that the evolved two-dimen- 
sional finite-amplitude state is quite susceptible to three-dimensional instabilities. 

Run 3A suggests a simple mechanism for transition. Whereas two- and three- 
dimensional linear instabilities of plane Poiseuille flow are quite mild and occur only 
for large Reynolds numbers (R 2 5772), finite-amplitude two-dimensional neutrally 
stable states of plane Poiseuille flow seem to be explosively unstable to three-dimen- 
sional perturbations at subcritical Reynolds numbers. 

In runs 7-1 6 we investigate the finite-amplitude aspects of three-dimensional 
instability of plane Poiseuille flow. All of these runs (except run 16) are made by 
choosing the initial condition to consist of a superposition of four components: 

Here U ( z )  = 1 - z2 is the unperturbed plane Poiseuille flow, vZD(z) is a two-dimensional 
eigenfunction of the Orr-Sommerfeld equation, and V * . , ~ ~ ( Z )  is a three-dimensional 
eigenfunction of the Orr-Sommerfeld equation with spanwise wavenumber f 8. 
The form of this initial flow field is chosen to correspond to that suggested by the 
experiments of Klebanoff et al. (1962) and the theory of Benney & Lin (1960). 
The oblique three-dimensional disturbance is always formed with symmetric 
- + B components, so the initial conditions give a standing wave disturbance with the 
x axis an axis of symmetry. For all runs (except runs 12 and 13) the Orr-Sommerfeld 
eigenfunctions vZD and v3D are chosen to be the least stable eigenfunctions for 
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FIGURE 10. A plot of the maximum amplitude A vs. t for the two-diinensional primary disturbance 
and its harmonic and the three-dimensional primary wave [with a = 1.3231 and p = 11 in run 3A. 
The two-dimensional part of the initial conditions is the same as in run 3 of 5 3 while the three- 
dimensional component is introduced initially through round-off error. Note that the amplitude 
of the three-dimensional component is multiplied by lo8. 

the given values of a, p. Because of the computational cost of the three-dimensional 
runs, we have not been able to  make a complete survey of the effects of disturbance 
wavelength and amplitude on the strength of the transition process. However, there 
are indications on the basis of the results reported below that the chosen values of a 
and p give nearly the most strongly unstable results. 

I n  figures 11 and 12 we plot the profiles of the two-dimensional disturbance uZD(x) 
and the three-dimensional disturbance u + , ~ ~ ( z ) ,  respectively, applied initially in runs 
7 and 8. I n  figures 13 and 14, we plot the maximum amplitude of the two-dimensional 
primary disturbance, its two-dimensional harmonic [depending on x like exp (2iax)], 
and the primary oblique wave [depending on x and y like exp (iax + ipy)] for runs 7 
and 8, respectively. 

The only difference between runs 7 and 8 is that run 7 has twice the x, ZJ resolution. 
It is apparent from figures 13 and 14 that the results are nearly identical through 
t = 35, but the results later diverge. I n  run 7, the flow seems to ‘break down’ a t  
t x 40, while in run 8 the ‘breakdown ’ seems to occur for t z 37. (Part of this difference 
may be due to time truncation error since run 7 uses a time step of 0.05 while run 8 
uses a time step of 0.1 .) Another run made with the initial conditions of runs 7 and 8 
but increasing the z resolution t o  65 Chebyshev polynomials showed no change from 
the results with 33 Chebyshev polynomials until well into the breakdown region. 

I n  tables 5 and 6, we give values of the maximum amplitudes in z of the x velocity 
Fourier components u(m, n, z, t ) ,  given in terms of the spectral components u(m, n,p, t )  
in (2.3) by 

P 

p - 0  
u(m, n, 2, t )  = z u(m, %P, t )  q x ) .  
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FIGURE 11.  A plot of the z profile of the x velocity of the two-dimensional disturbance used in 
runs 7-13. This disturbance is chosen to be the least stable eigenmode of the Orr-Sommerfeld 
equation for plane Poiseuille flow a t  R = 1250 with a = 1 .  The amplitude of this initial perturba- 
tion is reduced by 25% in run 9. 

FIGURE 12. A plot of the z profile of the x velocity of the initial three-dimensional disturbance 
imposed in runs 7-9. This disturbance is chosen as the least stable eigenmode of the Orr-Sommer- 
feld equation a t  R = 1250 with a = 1 and p = 1. In run 9, the initial amplitude is decreased by 
25 yo. 
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FIGURE 13. A plot of the maximum disturbance amplitudes A ~(1. t for the three-dimension& 
planePoiseuilleflow run 7at R = 1260. Theplottedamplitudes are the maxima in z ofthe zvelooit) 
of the two-dimensional primary disturbance and its harmonic (multiplied by 10) and the thm 
dimensional primary disturbance [depending on x like exp ( i m +  ipy) with a: = 1 and B = 11. 

FIQURE 14. Same as figure 13 except for run 8. The amplitude of the two-dimensional hermonio 
is not multiplied by the factor 10 used in figure 13. 

While the convergence of the expansion (2.3) evidently does deteriorate somewhgh 
with time, especially near t NN 40 when the flow breaks down, the decrease of the 
maximum amplitude with increasing m and n is sufficiently rapid for ua to confidently 
assert that the results of run 7 are real and not due to numerical instability. Also, 
while the effects of truncation of the Fourier oxpansion (2.3) in run 8 are even more 
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Spanwise wavenumber (n) 

t 1 

0 0 
10 1.88 (-2) 
20 3.24 ( -  2) 
30 3-79 ( - 2)  
35 3.38 (-2) 
40 2.76 (-2) 
45 3.18 (-2) 
60 2.94 ( -  2) 

2 3 
0 0 
8.29 ( -  3) 6.60 ( -  4) 
2.32 (-2) 4.10 (-3) 
6.19 ( - 2) 1.56 ( -  2) 
9-56 (-2) 2.51 (-2) 
1.27 ( - 1) 3.48 ( - 2) 
1.36 ( -  1) 3.04 ( -  2) 
6.84 ( -  2) 1.00 ( - 2) 

4 6 
0 0 
1.42 ( -  4) 3.40 ( - 6) 
2.40 ( - 3) 4.78 ( - 4) 
8.55 ( -  3) 2.09 ( -  3) 
1.30 ( - 2) 2.32 ( - 3) 
1.73 (-2) 4.41 ( -  3) 
2.06 ( -  2) 6.90 ( -  3) 
2.14 (-2) 8.17 (-3) 

8 
0 
1.00 (-  7) 
1-00 (-4) 
1.57 (-3) 
1.77 ( -  3) 
2.71 ( -  3) 
4.34 ( -  3) 
2-88 (-3) 

TABLE 5. Maximum amplitude in z of the transverse Fourier components of the 2 velocity 
u(m = 0, n, z, t )  in the mixed spectral (2, y)-physical ( z )  space representation for run 7. 

Time ( t )  

, 
20 

5.69 (-2) 
4.50 ( -  3) 
1.45 (-3) 
4.99 ( -4) 
6.08 (-6) 
1.10 (-6) 

7.61 (-2) 
6.76 ( -  3) 
6-98 ( - 4) 
6.36 (-6) 
1.61 (-5) 

30 

4.11 (-2) 
4-48 ( - 3) 
8.31 (-4) 
9.63 (-6) 
3.02 ( -  5) 
1.03 ( -  6) 

8.16 (-2) 
2.47 ( -  3) 
2.80 (-4) 
4.34 ( -5) 
1.43 (-6) 

40 

2.70 ( - 2) 
3.31 ( -  3) 
3.05 (-4) 
2.16 ( -  4) 
3.50 (-6) 
1.28 (-5) 

6.14 (-2) 
8.71 (-4) 
2.32 (-4) 
3.06 ( -5 )  
1.36 (-5) 

1 

60 

1.78 (-2) 
7.66 ( -  3) 
6.33 ( -  3) 
3.76 ( -  3) 
2.26 ( -  3) 
5.92 (-4) 

2.31 (-2) 
9.46 (-  3) 
1.89 (-3) 
1.20 ( -  3) 
4.31 (-4) 

Diagonal 
components 

(292) 6.90 (-  3) 6.37 ( -  3) 3.99 ( -  3) 9-55 (-3) 
(3,3) 1-12 ( -  3) 1.14 (-3) 1.28 ( -  3) 3.09 (-3) 
(494) 1.32 (-4) 3.69 ( -4) 4.05 (-4) 2.86 ( -  3) 
(6 ,  6) 6.38 ( -  6) 7.00 ( -  6) 9.30 ( -  6) 1.37 (-3) 
(8, 8) 5.64 ( -  7) 2.07 (-6) 1.38 ( - 6 )  7.94 (-4) 

TABLE 6 ,  Maximum amplitude in z of the Fourier components of the 2 velocity u(m, n, z, t )  in 
the mixed spectral (2, y)-physical (z) space representation for run 7. 

pronounced than for run 7, the lower resolution results of run 7, are a faithful predictor 
of flow breakdown and accurately represent the flow until just before breakdown 

We emphasize the qualitative change in the behaviour of the flow brought about 
by three-dimensionality . While the finite-amplitude two-dimensional results presented 

occurs. 
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in 9 3 show the resulting flow to be smooth, periodic and with no appreciable small- 
scale excitation, quite the opposite is true in the three-dimensional flows considered 
here. In  three dimensions, the flow develops into a state of apparent randomness with 
appreciable small-scale excitation. It is this latter state that we claim is representative 
of the transition to turbulence. 

While we cannot claim that our results for run 7 are in detail accurate for t 2 50 
when the flow is seemingly random and ‘turbulent’, the relative insensitivity to 
changes in resolution suggest strongly that our simulations accurately portray the 
breakdown of the laminar flow and its transition to turbulence. [While the flow after 
breakdown is almost certainly not being treated in detail accurately, there is some 
basis for the assertion that the statistical properties of the resulting flow are in remon- 
able agreement with real-flows. Some further elaboration of this point is given below. 
However, we do not stress the turbulence aspects of the developed flow in this paper 
as numerical simulations of turbulence are best done slightly differently.] 

The apparent discontinuities in the time-history curves plotted in figures 13, 14, 
and later arise because the maximum amplitude of each of the flow components may 
come from different local maxima and, hence, quite distinct z locations ctt different 
times. 

I n  figure 15, we plot x, y averages of the x component of the velocity field in run 8 
at 1 = 30-75(15): 

The results for run 7 a t  t = 30 and t = 45 (the only times at which corresponding 
results are available) are indistinguishable from the plotted curves. The mean velocity 
profiles plotted in figure 15 correspond to profiles in the nonlinear laminar, early 
transition, late transition, and turbulent flow regimes. Tho mean velocity profile at 
t = 75 is strikingly similar to mean velocity profiles observed experimentally in 
turbulent channel flow (Laufer 1951; Comte-Bellot 1965). In a continuation of run 8 
to t > 75, no change in the mean velocity profile is found. 
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1 0 1 

FIQURE 16. Plots of the instantaneous x velocity profiles u(z, y, z ,  t )  vs. z at t = 30 for run 7. -, 
x =  0, y = -n;-- .,x = 0, y = -4n; - - - - - ,  x = 0,y = 0; ....*, 2 = y n , y  = -Qn. 

1 0 I 

FIGURE 17. Same aa figure 16, except a t  t = 45. Labelled curves are plotted 
a t  the same values of 1: and 9 as in figure 16. 

While there are no strong inflexions appearing in the mean velocity profiles plotted 
in figure 15, instantaneous velocity profiles plotted in figures 16 and 17 for run 7 at 
t = 30 and t = 45, respectively, show strong inflexions. These local velocity profiles 
are strongly unstable and, presumably, their instability leads to the random behaviour 
observed at later times. 

Contour plots of the x velocity component for run 7 in the y, z plane at  x = 0 are 
given in figure 18 for t = 0-45( 15). At the spanwise-y location of the centre of the ‘ cat’s 
eyes’ observed in figure 18, the velocity profile is much fuller than the undisturbed 
plane Poiseuille profile and the corresponding wall shear is much greater (see figures 
16 and 17) .  In the region between the ‘cat’s oyes’, the local velocity profile is highly 
inflexional (as shown in figures 16 and 17). 
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FIGURE 20. Contour plots of flow components in run 7 at t = 30 in the y, z plane at z = 0. (a;) 
v(z,y,z), contours -0.06, 0.06 (0.01). (b)  w(z,y ,z ) ,  contours -0-024, 0.012 (0.004). (c) o&,y,z), 
contours -2.5, 2 (0.5). (d) w8(s,y,z), contours -0.3, 0.3 (0.06). 

t = 45, respectively, for run 7. In  figure 23, we present a similar plot of the two- 
dimensional harmonic components a t  t = 45 in run 7, while in figure 24 we plot the 
profile of the primary oblique wave (a = 1, fi = 1) at t = 45 in run 7. Figures 22-24 
show that, through the period of initial breakdown, the largest fluctuations occur in 
the neighbourhood of the walls. At later times, the harmonic components develop 
slightly stronger activity near the centre of the channel. The spatial structure and 
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FIGURE 21 (a, b) .  For legend see page 191. 
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FIGURE 21. Contour plots of the instantaneous z velocity u(z, y, z,  t )  in the 5, y plane at z = cosf,,n 
in runs 7 and 8. (a) t = 0, contours 0.19,0.41 (0.01). (b) t = 30, contours 0.21,0.42 (0.01) for run 7. 
(0 )  t = 60, contours 0-16,0.84 (0.04) for run 8. 

amplitude of these fluctuations is not inconsistent with experimental observations 
(Laufer 1951; Comte-Bellot 1965). 

Run 9 tests the effect of decreasing the initial amplitude of the two-dimensional 
and three-dimensional initial disturbances in runs 7 and 8 by 25 %. In  figure 25, the 
maximum amplitude of the primary two-dimensional wave, its harmonic, and the 
primary three-dimensional wave for run 9 are plotted as functions oft. The instability 
in run 9 is considerably weaker than in run 8. In  other runs, we have found that keeping 
the amplitude of the two-dimensional disturbance in run 8 at 0.11, but decreasing 
the amplitude of the three-dimensional disturbance to 0.025 stabilizes the flow. 
Similarly, another run decreasing the amplitude of the two-dimensional wave to 0.05, 
but keeping the amplitude of the three-dimensional wave disturbance a t  0.05 as in 
run 8, stabilized the flow. At R = 1250, there seems to be a critical amplitude of about 
0-08 for the two-dimensional component and about 0.04 for the three-dimensional 
component. 

Runs 10-13 were designed to test the sensitivity of the flow to various spanwise 
wavenumbers. The amplitude of the initial disturbances in these runs is chosen to be 
close to that of runs 7 and 8. Run 10 uses a primary spanwise wavenumber /3 = 0.25. 
In this case, the three-dimensional disturbance is nearly two-dimensional and is 
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FIGURE 22. A plot of the z profile of the two-dimensional primary disturbance 

u(1, 0, z, t )  [see (2.3)] in run 7: (a) t = 30; (b)  t = 45. 

barely distinguishable from the primary two-dimensional disturbance. The resulting 
flow is so nearly two-dimensional that the disturbances die away quickly. Run 11 
uses a primary spanwise wavenumber /3 = 0.5; in this case transition was observed 
but only at thelate time t x 120. (Even though runs 10-13 use the low spatial resolution 
8 x 8 x 33, we believe that the prediction of transition in runs I t  and 12 is justified 
because the three-dimensional disturbance remains at large amplitude during the 
laminar phase. The resolution problems discussed below with regard to runs 14 and 
15 seem to apply only to  marginally unstabIe flows.) 
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FIUURE 23. A plot of the x profile of the two-dimensional harmonic disturbance u(2,0,  z, t )  [that 
depends on x and y like exp (2ia43 at t = 45 in run 7. 

0.006 

FIUURE 24. A plot of the z profile of the primary three-dimensional disturbance u(f, l , z , t )  
[that depends on x and y like exp (iax + ipy)] a t  t = 45 in run 7. 

Other runs made with the two- and three-dimensional disturbances detuned from 
the least stable modes of the Orr-Sommerfeld equation [used in (4. l)] gave significantly 
less tendency to undergo transition than the runs discussed here. 

Runs 12 and 13 introduce a new feature into the calculation. With p = 2 (run 12) 
and = 4 (run 13), the least stable three-dimensional mode of the Orr-Sommerfeld 
equation is no longer concentrated near the wall like the two- and three-dimensional 
modes plotted in figures 11 and 12. The least stable three-dimensional mode with 

7 F 1 . M  96 
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FIGURE 25. A plot of the maximum disturbance amplitudes vs. t in run 9 a t  R = 1250. This run 
is the same as run 8 except that the initial amplitudes of both the two- and three-dimensional 
disturbances are reduced by 25%. 
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FIGURE 26. A plot of the z profile of the least stable eigenmode of the Orr-Sommerfeld equation 
for plane Poiseuille flow a t  R = 1250 with OL = 1 and p = 4. Observe that this mode is concentrated 
near the centre of the channel, so it has little opportunity to interact with the least stable two- 
dimensional disturbance which is concentrated near the walls. This kind of three-dimensional 
disturbance typically does not lead to transition. The eigenvalue of the Orr-Sommerfeld equation 
is w = 0.9076-0.0579i. The phase velocity of this mode is about 0.9, in contrast to the phase 
velocity of wall modes which are usually in the range 0.3-0.4. 

j = 4 a t  R = 1250 is plotted in figure 26; it  is evident that this mode is concentrated 
near the centre of the channel. Runs made using this three-dimensional centre mode 
together with the two-dimensional disturbance mode plotted in figure 11 invariably 
decay, evidently because there is not enough interaction between the centre mode 
and the wall mode disturbances. However, transition to turbulence with these larger 
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FIGURE 27. A plot of the z profile of the second least stable eigenmode of the Orr-Sommerfeld 
equation for plane Poiseuille flow at R = 1250 with a = 1 and /3 = 4. This wall mode has eigen- 
value o = 0.4635-0.1607i. This mode is used as the three-dimensional disturbance in run 13. 

spanwise wavenumbers p can be achieved by using a three-dimensional wall mode 
disturbance. The least stable three-dimensional wall mode disturbance with /3 = 4 at 
R = 1250 is plotted in figure 27. Runs 12 and 13 use these least stable wall modes. 
Run 12 is strongly unstable and leads quickly to transition. On the other hand, run 13 
is stable and does not undergo transition, even though the wall mode disturbance is 
used. Evidently there is a spanwise wavenumber selection mechanism involved in the 
transition process. It seems that the most dangerous three-dimensional disturbances 
have wave fronts a t  an angle of about 45"-60" to the mean flow. 

Runs 14 and 15 illustrate a possible pitfall of numerical analysis of these transition 
problems. The only difference between these two runs is the horizontal resolution: 
in run 14, only 8 x 8 Fourier modes are used to resolve the x and y directions; in run 
15, 16 x 16 Fourier modes are used. Both runs are made a t  R = 750. In figure 28, we 
plot the maximum amplitudes of the primary two-dimensional wave, its harmonic, 
and the primary three-dimensional wave for run 14. The disturbances decay until 
about t w 100 and then abruptly erupt into turbulence. A similar plot for run 15 is 
given in figure 29. In  this case, the disturbances undergo only a smooth continuous 
decay and no 'transition' is observed. We have also made a run in which the 8 x 8 x 33 
resolution of run 14 is increased to 16 x 16 x 33 a t  t = 90 in run 14; in this case, as in 
run 15, no transition is observed. Evidently low-resolution can give premature pre- 
dictions of transition. Similar effects of low resolution have been observed by 
McLaughlin & Orszag (1979) in calculations of transition in three-dimensional 
B6nard convection. It is essential that transition calculations be done with utmost 
care, in order to avoid these spurious predictions of instability and breakdown in 
three-dimensional calculations. Our spectral calculations do provide a ' bootstrap ' 
procedure to test internal accuracy of the simulations; if the spectrum obtained by 

7-2 
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FIGURE 28. A plot of the maximum disturbance amplitudes in run 14 a t  
R = 760. This run uses 8 x 8 x 33 spatial resolution. 
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FIGURE 29. The same as figure 28, except for run 15. The amplitude of the two-dimensiod 
harmonic components is multiplied by a factor 10. Run 15 differs from run 14 only in that the 
spatid resolution is 16 x 16 x 33. Observe that the flow no longer undergoes ' transition'. 

run 14 is tested for convergence in the same way as the spectrum of run 7 is tested by 
the results given in tables 5 and 6, it  is found that the 8 x 8 truncation in x and y id 
run 14 has a large effect. We are confident that our transition predictions cited earlier 
in this section, especially for run 7, are not affected by these resolution problem8 of 
run 14. 
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FIQURE 30. A plot of the maximum disturbance amplitudes vi?. t for run 16 at R = 500. The 
initial conditions for this run are the output Conditions from run 8. These initial conditions are 
intended to simulate turbulence. 

Our final plane Poiseuille flow is run 16. Here the initial conditions consist of the 
output from run 8. These ‘turbulent’ initial conditions are then run at the lower 
Reynolds number R = 500, in order to test whether an initial field of turbulence can 
persist at this lower Reynolds number. In  figure 30, we plot the evolution of the 
maximum amplitude of the two-dimensional primary wave, its harmonic, and the 
primary three-dimensional wave. While the results are not conclusive, it seems that 
the field of turbulence is slowly decaying and that R = 500 is not sufficiently high to 
sustain turbulence. 

Runs 17-20 investigate the effect of three-dimensional finite-amplitude disturb- 
ances on plane Couette flow. While plane Couette flow is much more stable than plane 
Poiseuille flow for small-amplitude disturbances and two-dimensional finite-amplitude 
disturbances (see Q 3), the effects of finite-amplitude three-dimensional disturbances 
at modest Reynolds numbers are just as dramatic in plane Couette flow as in plane 
Poiseuille flow. 

In  figures 31 and 32, we plot the profiles of the x velocity of the two- and three- 
dimensional primary disturbances, respectively, applied initially in runs 17 and 18 
at R = 1250. These profiles are obtained from the corresponding least stable eigen- 
functions of the Orr-Sommerfeld equation for plane Couette flow by forming the 
symmetric combination (3.2) [with an extra factor exp (i/3y) for the three-dimensional 
mode]. (The asymmetry observed in figure 31 is due to the complex phase of the mode 
at the particular value of x at which the plot was made.) In figure 33, we plot the maxi- 
mum amplitude of the two-dimensional primary disturbance, its harmonic, and the 
primary three-dimensional disturbance versus t for run 17. The flow breaks down to 
turbulence near t = 45. A similar plot for the lower resolution run 18 is given in figure 
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FIGURE 31. A plot of the z profile of the initial two-dimensional disturbance used in runs 17 and 
18. This disturbance is constructed from the least stable eigenmode of the Orr-Sommerfeld 
equation for plane Couette flow at R = 1250 with a = 1 and = 0 by symmetrizing according 
to (3.2). 
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0.08 i 
FIGURE 32. The same as figure 31, except that the profile of the initial 

three-dimensional disturbance for runs 17 and 18 is plotted. 

34. There is good agreement between the results plotted in figures 33 and 34 until 
beyond the breakdown of the laminar flow. We conclude that this flow does undergo 
transition to turbulence. 

In  figure 35, we plot the mean-velocity profile Z(z) for run 17 at t = 60. It is apparent 
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FIGURE 33. A plot of the maximum disturbance amplitudes A w. t 
in run 17 for plane Couette flow at R = 1260. 
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FIGURE 34. The same as figure 33 for run 18, also at R = 1250. 
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FIGURE 35. A plot of the mean velocity profile U ( z )  at t = 60 in run 17. 

that the mean-velocity profile is tending toward the characteristic S-shape expected 
in turbulent Couette flow. 

The effect of the symmetrized initial condition (3.2) on the evolution of the flow is 
illustrated by runs 19 and 20 made at R = 1000. The maximum amplitude plot for 
run 19 plotted in figure 36 suggests possible transition near t = 75; we hesitate to 
claim that this transition is real because of possible resolution limitations. The 
maximum mode amplitudes for run 19 listed in table 7 show that the transverse 
(m = 0) modes are likely to be inadequately resolved for t 2 60. An interesting feature 
of figures 33,34,  and 36 for the symmetrized initial disturbances is the high-frequency 
oscillation of the maximum amplitude of the two-dimensional primary wave and its 
harmonic. Run 20 is made using unsymmetrized Orr-Sommerfeld eigenfunctions as 
initial conditions. The maximum amplitude plot for this run, made at  R = 1000, is 
given in figure 37. Two features are noteworthy. First, in contrast with run 19, the 
transition in this case can be much more confidently asserted, because the resolution 
limitations do not appear to be severe until after breakdown occurs. Second, the high- 
frequency oscillations in the two-dimensional disturbances and its harmonic have 
disappeared. 

As for plane Poiseuille flows, the plane Couette flow runs are characterized by very 
rapid generation of the transverse Fourier components m = 0 in (2.3) [see table 7 
for the results of run. 191. In these flows, it seems that small-scale structures are 
generated by the strong instability of the flows resulting from superposition of the 
longitudinal vortices, represented by the transverse (m = 0) Fourier components, on 
the basic laminar flows (1.3-1.4). 

We have encountered significant difficulty in extending our plane Couette flow runs 
to  later times than initial breakdown. Evidently, the turbulence that develops is of a 
particularly severe kind that is inadequately resolved by using the current codes. 
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Time ( t )  

r -I 
A 

Component (m, n) 30 45 60 75 

Two-dimensional 
harmonics 

(19 0) 4.87 ( -  3) 2.08 ( -  3) 1.40 ( -  3) 2.58 
(2, 0) 8.51 ( - 4 )  2.57 ( - 4 )  1.42 ( -  3) 1.85 
(390) 8.53 ( -  5) 2.52 ( -5) 1.87 ( - 4 )  8.56 
(490) 1.92 ( -5)  2.42 ( -  6) 7.07 ( -5)  2.98 
(6, 0) 2.70 ( - 6 )  3.29 ( -  7) 1.20 ( - 6 )  4-39 

- 3) 
- 3) 
- 4) 
- 4) 
- 5) 

2.76 ( - 2 )  
1.31 ( -3)  
9.69 ( - 5 )  
2.29 ( - 5) 
3.50 ( - 6 )  

1.32 ( - 2 )  
2.57 ( - 2 )  
6.14 (-3) 
1.91 ( - 3 )  
1.38 ( - 4 )  

1.30 ( - 3 )  
1.14 ( - 4 )  
1.37 ( -5 )  

6.30 ( -  3) 
9.32 (-5) 
4.41 ( -5 )  
3.91 ( - 6 )  
2.47 ( -  7) 

1.63 ( - 2 )  
4.19 ( -  2) 
9.12 ( - 3 )  
6.34 ( - 3) 
1.53 ( - 3 )  

3.55 ( - 4) 
8.14 ( -5 )  
8.86 ( -  6) 

1.11 ( - 3 )  
3.95 ( -  4) 
4.82 ( -  5) 
3.30 ( -  5) 
1.17 ( - 6 )  

1.95 ( -2)  
4.08 ( -  2) 
5.51 ( - 3 )  
5.62 ( - 3 )  
3.08 ( -  3) 

2.44 ( - 3) 
1.45 ( - 4 )  
2.20 ( - 5) 

4.97 ( -  3) 
2.96 ( -3)  
1.37 ( -3)  
3.92 ( - 4 )  
3.46 ( - 5 )  

1.95 ( - 2 )  
3.65 ( - 2 )  
1.14 ( -2)  
7.72 ( - 3) 
6.09 ( -  3) 

3.55 ( - 3) 
1.62 ( - 3 )  
4.22 ( - 4 )  

TABLE 7.  Maximum amplitude in z of the Fourier components of the 2-velocity u(m, n, z ,  t )  in 
the mixed spectral (2, y)-physical ( z )  space representation for run 19. 

In  conclusion, it seems that plane Couette flow undergoes transition at  Reynolds 
numbers at least as low as those for which plane Poiseuille flow undergoes transition. 
Three-dimensional effects are crucial in establishing breakdown at Reynolds numbers 
of order 1000. 

5. Conclusions 
The results presented in $5 3 and 4 show the central role played by the interaction 

of two- and three-dimensional finite-amplitude disturbances in the breakdown of 
plane Poiseuille and plane Couette flows. The basic character of this interaction is 
qualitatively consistent with the theory developed by Benney & Lin (1960) to explain 
the experiments of Klebanoff et al. (1962). However, as has been emphasized by 
Stuart (1961)) the Benney-Lin theory can be a t  best qualitatively correct. The theory 
assumes that the phase velocities of the interacting two- and three-dimensional waves 
are identical, which is not correct (see tables 3 and 4). 

Our calculations show that three-dimensional finite-amplitude effects produce 
strong inflexional velocity profiles that eventually break down to turbulence. In plane 
Poiseuille flow, these three-dimensional effects due to initial disturbances with 
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FIGVRE 36. The same as figure 33, except for the plane Couette flow, for 
run 19 a t  R = 1000. Symmetrized initial conditions are used. 
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FIGURE 37. The same as figure 33, except for the plane Couette flow, run 20 at R = 1000. In  this 
case, unsymmetrized initial conditions are used. Observo that the high-frequency time oscillations 
in the maximum amplitude of the two-dimensionai primary disturbance and its harmonic 
disappear. 
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amplitudes of 5-10 "4 of the mean flow explain the experimentally observed trans- 
itions a t  Reynolds numbers of order 1000, whereas arbitrarily large two-dimensional 
finite-amplitude disturbances seem powerless at Reynolds numbers much below 3000. 
The most dangerous three-dimensional interactions seem to be between oblique Orr- 
Sommerfeld modes propagating a t  about 45' to the unperturbed flow with a wave- 
length about 3 times larger than the channel depth. In  plane Couette flow, our 
numerical results suggest that three-dimensional effects due to initial disturbances 
with amplitudes of order 5-10 yo can drive transition at Reynolds numbers of order 
1000, while two-dimensional effects do not seem strong even at  Reynolds numbers an 
order of magnitude larger. The numerical results also suggest that turbulence can be 
sustained in these planar shear flows at somewhat lower Reynolds numbers but not as 
low as 500. 

One disturbing feature is the high resolution in both space and time that seems to 
be necessary to  compute these transition flows. To compute transition accurately, it is 
necessary to calculate relatively weak interactions over many linear oscillation periods. 
While turbulent flows do require high spatial resolution, they also evolve quickly so 
that the total computer time may be less than for a transition calculation. Also, in 
turbulence calculations, only statistical averages need be determined accurately and 
practice has shown that accurate statistical results can be obtained with relatively 
low resolution. 

It is interesting that we have found, in contrast to some previous investigators, that 
the accuracy requirements of transition calculations are more severe in the horizontal 
x and y directions than in the x direction normal to the walls. The Chebyshev expan- 
sions used in the z direction have extraordinarily good resolution near the walls. Our 
result that low horizontal resolution can give spurious predictions of transition must 
be considered carefully in future work on these problems. Low horizontal resolution 
prevents the excitation of small-scale motions that can act as an 'eddy' viscosity 
that damps out instabilities. 

This work was supported by the Defense Advanced Research Projects Agency under 
DARPA Order no. 2924, ONR Contract no. N00014-77-C-0138. 
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